Leveraging indoor air quality data to minimise the spread of COVID19

Guidance to adapt the workplace after COVID19

In today's session we'll cover

- The importance of monitoring indoor air quality (IAQ) in relation to COVID19
- How to measure IAQ and the standards to benchmark against
- How to leverage IAQ data to keep your buildings safe
- Go through questions you asked during the broadcast

Give us your feedback for future webinar content

Yodit Stanton CEO & Founder OpenSensors

OpenSensors

Guest speaker

- Over 30 years experience in electronic engineering
- Bruno oversees the digital front-end for electrochemical sensors and particulate monitors, together with an open infrastructure for air quality data
- Has worked on numerous air quality monitoring projects

Bruno Beloff CO-Founder of South Coast Science

We can't monitor airborne concentration of SARS-CoV-2 in real time

....but we can monitor the parameters that influence infection: Temperature, Humidity, Particulate Matter (PM), Occupant density

OpenSensors

How IAQ can increase the spread of viruses

Key

- °C = Temperature
- RH = Relative humidity
- CO_{2} = Carbon dioxide
- ACH = Air circulation per hr

Why indoor air quality matters

"People stay **indoors** for about **93%** of their time and this may increase to **100%** for some in this current situation."

Mohamed Yehia Zakaria Abouleish, IAQ and Coronavirus Public health 2020

South Coast

The link between poor air quality and the spread of COVID19

"We found that an increase of only 1 µg/m3 in PM2.5 is associated with an 8% increase in the COVID-19 death rate

Conclusions: A small increase in **long-term exposure to PM2.5** leads to a large increase in the **COVID-19 death rate.**"

Xiao Wu et al, Exposure to air pollution and COVID19 mortality, Harvard University 2020

OpenSensors

How to monitor indoor air quality

South Coast

What data to gather

Recommended by the Well Building Institute

- PM_{2.5} less than 15 µg/m³
- PM₁₀ less than 50 µg/m³
- Carbon dioxide (CO2) 500ppm-600ppm
- Carbon monoxide (CO) less than 9,000 ppb
- Nitrogen dioxide (NO2) less than 100 ppb
- Ozone (O3) less than 51 ppb

Source: https://standard.wellcertified.com/air/air-quality-standards

Accuracy, testing, quality assurance

reference versus reported PM levels for OPC-N3 sensor

reference versus corrected PM levels for OPC-N3 sensor-based system

South Coast

Air quality hot spots

Quickly identify areas in the office where the air quality needs to be adjusted throughout the day

The link between occupancy and increased CO₂

Key takeaways

Monitor the following variables

- Temp^oC = $21^{\circ C}$
- Relative humidity RH = 40% 60%
- Carbon dioxide CO₂, = 500ppm-600ppm
- Particulate matter PM_{2.5} = <10 micrograms per cubic metre
- Air circulated per hour ACH
- Occupancy
- Nitrogen Oxide NO₂
- Volatile Organic Compound VOC

Use sensors the gather air quality data

- Allows for efficient validation when assessing the health of your workplace
- Lets you quickly see IAQ levels and adjust as needed
- Data is much more accurate and reliable

SouthCoast

Bruno Beloff

Q Southcoastscience.com

<u>contact@southcoastscience.com</u>

Connect with us

- in OpenSensors.io
- 🕑 OpenSensors.io

